1 5 Fe b 20 02 BILINEARIZATION OF N = 1 SUPERSYMMETRIC MODIFIED KDV EQUATIONS

نویسنده

  • Debojit Sarma
چکیده

Two different types of N = 1 modified KdV equations are shown to possess N soliton solutions. The soliton solutions of these equations are obtained by casting the equations in the bilinear forms using the supersymmetric extension of the Hirota method. The distinguishing features of the soliton solutions of N = 1 mKdV and N = 1 mKdV B equations are discussed. email: [email protected] email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

Some techniques of bilinearization of the non-autonomous 1 + 1 dimensional discrete soliton equations is discussed by taking the discrete KdV equation, the discrete Toda lattice equation, and the discrete LotkaVolterra equation as examples. Casorati determinant solutions to those equations are also constructed explicitly.

متن کامل

S ep 2 00 8 Bilinear Approach to N = 2 Supersymmetric KdV equations

The N = 2 supersymmetric KdV equations are studied within the framework of Hirota’s bilinear method. For two such equations, namely N = 2, a = 4 and N = 2, a = 1 supersymmetric KdV equations, we obtain the corresponding bilinear formulations. Using them, we construct particular solutions for both cases. In particular, a bilinear Bäcklund transformation is given for the N = 2, a = 1 supersymmetr...

متن کامل

ep - t h / 02 02 18 5 v 1 2 6 Fe b 20 02 Supersymmetric variational energies for the confined Coulomb system

The methodology based on the association of the Variational Method with Supersymmetric Quantum Mechanics is used to evaluate the energy states of the confined hydrogen atom.

متن کامل

/ 99 02 20 1 v 1 2 6 Fe b 19 99 On the structure of exact effective action for N = 1 supersymmetric theories

We discuss the ways of constructing the exact superpotential for N=1 supersymmetric theories and propose a new approach. As a consequence , a new structure of the superpotential is found.

متن کامل

Nonlocal conservation laws for supersymmetric KdV equations

The nonlocal conservation laws for the N=1 supersymmetric KdV equation are shown to be related in a simple way to powers of the fourth root of its Lax operator. This provides a direct link between the supersymmetry invariance and the existence of nonlocal conservation laws. It is also shown that nonlocal conservation laws exist for the two integrable N=2 supersymmetric KdV equations whose recur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002